

教科書と現場のインターフェース

合点! 電子回路入門

石井 聡
Satoru Ishii

第7回

電子回路の計算ツール…複素数(その2)

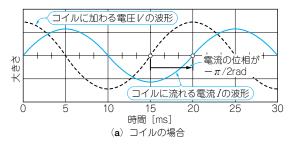
電子回路自体は、足す/引く/掛ける/割るを基本として動いています。別に複素数で動いているわけではありません。回路計算に複素数を使うため「回路はとても難しい動きをしているんだろう」と錯覚しがちですが、それは違います。回路計算で複素数が用いられるのは、数式上での計算を簡単に取り扱えるようにするための、計算方法の置き換えなのです。

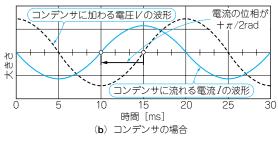
そして「複素数というツール」の使い方がわかった 時点で、単純と思われるオームの法則で、交流回路と、 その交流回路での「電流を妨げる量」であるインピー ダンスの計算をすべて制覇することができるのです.

今回は,実際の複素数の表記方法と計算について考えていきます.

コイル/コンデンサのリアクタンス量を $e^{j\theta}$ で表す

リアクタンス Xはインピーダンス Zの一要素です。 リアクタンスは一般的に記号 Xが用いられ、単位は オーム $[\Omega]$ です。リアクタンスは $e^{i\theta}$ ではどうなる





でしょうか. あらためて図7-1に、コイル、コンデンサ(リアクタンス量 X_L 、 X_C となる)に加わる電圧Vと、流れる電流Iの関係を示しておきます。電圧V、電流Iは実際の大きさでなく記号V、Iで示してあります。

電流の位相がπ/2 rad 遅れているコイルでは…

コイルは $\mathbf{Z7-1}(\mathbf{a})$ や同図 (\mathbf{c}) のように、電流Iの位相が電圧Vに対して $\pi/2$ rad遅れています。これを、

$$I = V/X_L$$

 Ve^{j0} [V] \Rightarrow オームの法則 \Rightarrow $Ie^{-j\pi/2}$ [A] として、電流を妨げる要素として電圧と電流の関係をつないでみると、

 $e^{+j\pi/2}$ ⇒位相を+ $\pi/2$ rad 変化させる定型フォ

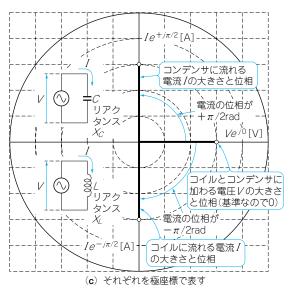


図7-1 コイル/コンデンサに加わる電圧と流れる電流の関係(周波数は50 Hz)

コラム 1 波形を表す cos 8 の式で同じように位相量を変換できるか

前回の(公式1)のように定型フォームは, $e^{j(\theta 1+\theta 2)}=e^{j\theta 1}\times e^{j\theta 2}$ ……………(7-A) と $e^{j\theta}$ の形のままで, θ の部分だけを変化させることができます.一方 $\cos\theta$ では,

$$\cos(\theta_1 + \theta_2)$$

= $\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2$ …………(7-B) と θ の部分だけを変えることができず、このように複雑な \sin , \cos の組み合わせの形になってしまいます(三角関数の加法定理).

実際の信号の動きとしては、この $\cos\theta$ の式のままで動いているのですが、計算上での扱いが面倒になるので、 $e^{i\theta}$ の形に置き換えて、数式上での回路計算を簡単に取り扱えるようにしています.

ームの一つ

と考えることができます. $e^{-j\pi/2}$ で、電流 Iの位相が $\pi/2$ rad 遅れていることを表しています.

リアクタンス X_L は分母にあります。電流 I とリアクタンス X_L とは逆数の関係なので、11 月号の p.219 の (公式 2) のように電流 I の位相は $-\pi/2$ rad ですが、 $j\theta$ の部分の符号が(位相量のプラス/マイナスが)反対の $e^{+j\pi/2}$ になっています。

\blacktriangleright コイルの $e^{+j\pi/2}$ は "+j" だけで表される

コイルのリアクタンス X_L は**図7-2**のように、

$$X_L = [X_L$$
の大きさ] × $e^{+j\pi/2}$

 $= + j \times [X_L$ の大きさ] $= + j 2 \pi f L \cdots (7-2)$ と $e^{+j\pi/2} = + j$ になります (稿末のコラム2を参照). 単純な虚数 $+ j (j = \sqrt{-1})$ だけが残ります. つまり定型フォームでの $+ \pi/2$ rad (90°) というのは,虚数 + j だけで示されます (これは以降の実際の計算でもとても重要なこと).

電流の位相が π/2 rad 進んでいるコンデンサでは…

コンデンサは図7-1(b)や同図(c)のように、電流 Iの位相が電圧 Vに対して $\pi/2$ rad 進んでいます。これも、

$$I = V/X_C$$

 Ve^{j0} [V] ⇒オームの法則⇒ $Ie^{+j\pi/2}$ [A]

と、電流を妨げる要素として電圧と電流の関係をつないでみると、

$$Ve^{j0}$$
 [V]

 $[リアクタンス <math>X_C$ の大きさ $]e^{-j\pi/2}[\Omega]$

 $= Ie^{+j\pi/2} [A] \cdots (7-3)$

[リアクタンス X_C の大きさ] $\Rightarrow V/I \Rightarrow 1/2 \pi fC$

⇒単なる「大きさ」のみ

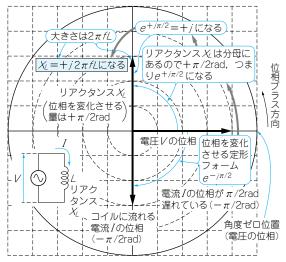


図7-2 コイルに加わる電圧 Vと流れる電流 Iを極座標で示し、コイルのリアクタンス X_L の $e^{+j\pi/2}$ =+jを説明する

 $e^{-j\pi/2}$ ⇒位相を $-\pi/2$ rad 変化させる定型フォームの一つ

と考えることができます. $e^{+j\pi/2}$ で、電流 Iの位相が $\pi/2$ rad 進んでいることを表しています.

コイルと同様に、リアクタンス X_C は分母にあり、 $j\theta$ の符号が反対の $e^{-j\pi/2}$ になっています.

\blacktriangleright コンデンサの $e^{-j\pi/2}$ は "-i" だけで表される

コイルの場合と同様に、コンデンサのリアクタンス X_C も**図7-3**のように、

 X_C = $[X_C$ の大きさ] × $e^{-j\pi/2}$

$$=-j \times [X_C$$
の大きさ] $=-j\frac{1}{2\pi fC}$ …(7-3)

と $e^{-j\pi/2} = -j$ になり、虚数の-jだけが残ります。 定型フォームでの $-\pi/2 \operatorname{rad}(90^\circ)$ というのは、虚数-jだけで示されます。

e^{jθ}の定型フォームと現実の回路素子でのインピーダンスとのつながりを考える

[Zの大きさ $] \times e^{i\theta}$ と現実の回路素子とが,どのように関係づけられるのかをさらに示していきましょう.

ここでの話の説明順序としては、①極座標から XY 方向それぞれの大きさを考える ($e^{i\theta}$ から実際の回路へのアプローチ)、②それを逆向きに考える (実際の回路から $e^{i\theta}$ へのアプローチ) となっていますので、これをまず頭に入れておいてください (「X方向」の Xはリアクタンスではないので注意のこと).

● *e^{j6}* の定型フォームと実際のインピーダンスとの つながりを考えるうえでの前提

以降の説明の前提として、図7-4(a)の直列回路を考えます。