
特集※高性能アナログ搭載マイコンの世界へ

第9章 STAGE6 電圧, 電流, 周波数, 周期, 温度, そしてにおいまで測定できる

多機能ディジタル・ マルチメータの製作

渡辺 明禎 Akiyoshi Watanabe

付録マイコン基板を搭載したマザーボード(p.112, 写真3)は、直流電圧、交流電圧、周波数、周期、温度などを測定できます。このマザーボードを丸ごとケースに入れて単3型電池2本で動作する携帯型ディジタル・マルチメータを製作しました(写真1). 写真2に示すさまざまなプローブを外部に接続すれば、電圧/電流だけでなく周波数や温度まで幅広いターゲット

写真1 製作したディジタル・マルチメータ

の物理量を測定することができます.

ここでは,抵抗測定など,いくつかの測定機能を紹介し、実現方法を説明します.

製作した DMM の概要

● 基本仕様

さまざまな測定モードに対応できるように、プローブはプラグイン方式としました. 回路図 (イントロダクションの図4) に示すように、プローブに使える信号はディジタル電圧出力 (50 mA 以下が 3 ch, 200 mA 以下が 1 ch) が 4 ch, DAC12 出力, TACLK 入力, A0 ~ A2 の 差動 A - D 入力 が 3 ch です.

ほかに、ユニバーサル・カウンタ用のBNC コネクタ、EIA - 574 (RS - 232C) シリアル通信用に9ピンDサブ・コネクタを用意しました。

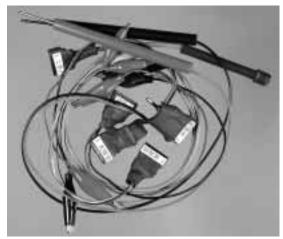


写真2 本章で製作したいろいろなプローブの外観

Keywords

ディジタル・マルチメータ,DMM,プローブ,2端子法,4端子法,開放故障,センシング抵抗,充放電法,2SK2232,電気二重層コンデンサ,周波数,周期,におい,TGS2450

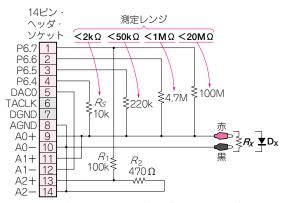


図1 抵抗,ダイオード測定用プローブの回路とヘッダ・ソケットとの接続

 R_1 , R_2 の回路はA2 土を使ってプローブを自動認識するための回路

ボタンの数は4個,表示は45桁のLCD,PWMを使った音声出力用スピーカがあります。電源は単3乾電池を2本です。

● プローブ・タイプの自動認識機能を実現

プローブの数や測定モードが20以上を越えると, プローブを取り替えるたびに測定モードを設定しなお す必要があり、これでは不便です。

また,ガス・センサ TGS2450(フィガロ)を接続する場合,ヒータ電圧を加え続けて壊す危険性もあります。そのようなセンサの場合,まちがった測定モードにすると、センサを壊してしまう可能性があります。

したがって、接続しているプローブを自動認識して、 測定モードを自動的に設定できる機構が必要となります.

そこで、 $A2\pm$ を使い、プローブの種類を決定できる回路をプローブに追加しました。図1は抵抗の測定に使うプローブの回路です。 R_1 と R_2 で構成される部分がプローブの種類を認識するための回路です。まず、P6OUT.7='0'で1番端子に電圧を加え、 R_2 の両端電圧を $A2\pm$ で測ります。この電圧値は R_2 の抵抗値で一意に決定できるので、プローブの種類を認識することができます。

抵抗値 R_2 と選択番号,プローブの種類の関係を表 1に示します.抵抗はE12系列としました.E24系列にすれば倍の数に増やすことができます. さらにマイナスの領域を使えば倍にできるので,実用上プローブの種類に制限はないと考えてよいでしょう.

測定モードによっては、プローブを使わない場合もあります。また、異なる測定モードで同一プローブを使う場合もあります。そのような場合、別途測定モードを設定する必要があります。このような場合は、UP/DOWNボタンで測定モードを設定します。

例えば、抵抗プローブは、抵抗、導通、ダイオード

表 1 プローブの種類を決める抵抗 R2 の値とプローブの種類の 関係(Sel - Num はマザーボードの SEL ボタンで選択)

抵抗 R_2	正電圧		負電圧	
の値	Sel_Num	プローブの	Sel_Num	プローブの
[Ω]	(選択番号)	種類	(選択番号)	種類
330	1	DCV	24	DCI (20 A)
390	2	ACV	25	ACI(20 A)
470	3	抵抗	26	C(1F)
560	4	導通	27	
680	5	DCI (0.2 A)	28	
820	6	ACI (0.2 A)	29	
1000	7	ダイオード	30	
1200	8	L 小	31	
1500	9	L 大	32	
1800	10	C小	33	
2200	11	C(0.1 F)	34	
2700	12	低抵抗	35	
3300	13	照度	36	
3900	14	におい	37	
4700	15	周波数 H	38	
5600	16	周波数 L	39	
6800	17	周期	40	
8200	18	加速度	41	
10000	19	気圧	42	
12000	20	温度	43	
15000	21	湿度	44	
18000	22	DCI(2 A)	45	
22000	23	ACI(2 A)	46	

の三つの測定モードで使用することができます. そこで,抵抗プローブを接続すると,自動認識で抵抗測定モード(3)が設定されます. その状態で導通試験をしたい場合は,UPボタンを押せば導通試験モード(4)となります. さらにUPボタンを押すとダイオード測定モード(7)となります. 抵抗測定モードにしたいときはSELボタンを押すと,ChkProbe()がコールされ,接続されているプローブを自動認識し,測定モードを設定するので,抵抗測定モードとなります.

UP/DOWNボタンで設定できる測定モードは、プローブで自動認識できない測定モードだけです。したがって、プローブで決まる測定モードをスキップできるので、モード設定も簡単に素早くできます。

もり込まなかった機能

本特集では、EW430が扱えるコード・サイズ制限 (4 Kバイト)、複雑になる、という2点の理由で省略しましたが、F4270の実力からみて次の機能を付け加えることは容易です。

レンジ・ホールド機能 パワー断機能

オート・パワーOFF機能