
連載

光, 熱, 磁力… アナログ回路で高精度に計測!

研究室で役に立つ! センサ応用回路集

第6回 温度センサ「熱電対し

松井 邦彦 Kunihiko Matsui

本連載では、さまざまなセンサを使った計測回路 の作り方を解説しています。第6回目に紹介するの は、温度センサ「熱電対」です。 〈編集部〉

基礎知識

● 極低温から超高温まで測定できる

熱電対はゼーベック効果を応用した温度センサです. ゼーベック効果とは、異なった2種類の金属線を図1

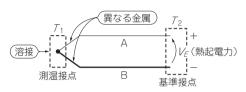


図1 熱電対は温度差で起電力を発生させる

のように結合して、接合点と基準点の間に温度差を与えると電圧(熱起電力)が発生する現象です。ゼーベック効果で発生した電圧がセンサの出力となるため、熱

表1 熱電対の種類(JIS C1602-2015)

熱電材の 記号		測定温度 範囲[℃]	熱起電力 [mV]	長 所	短所	構成材料	
						+	_
高温用	K	- 200 ~ + 1200	- 5.891/- 200 °C + 48.838/+ 1200 °C	・工業的にもっとも多 く利用される ・酸化性雰囲気に強い ・直線性が良い	・高温の還元性雰囲気では劣化する ・一酸化炭素や亜硫酸ガスなどには不適 ・+200~+600℃ではショート・レンジ・オーダリング誤差がある	クロム10% ニッケル 90% (クロメル)	アルミ, マ ンガン系な ど残ニッケ ル(アルメ ル)
中温用	Е	- 200 ∼ + 800	- 8.825/- 200 °C + 61.017/+ 800 °C	・もっとも大きな熱起電力をもつ	・還元性雰囲気に弱い・電気抵抗が大きい・ショート・レンジ・オーダリング誤差がある	クロム10% ニッケル 90% (クロメル)	ニッケル45 % 銅 55 % (コンスタ ンタン)
	J	- 200 ~ + 750	- 7.890/- 200 °C + 45.494/+ 800 °C	・熱起電力が大きい ・還元性雰囲気が強い	・酸化性雰囲気および水蒸気中では弱い ・さびを生じやすい	鉄	ニッケル 45 % 銅 55 %(コ ンスタンタン)
低温用	Т	- 200 ∼ + 350	- 5.603/- 200 °C + 20.872/+ 400 °C	・ - 200 ℃ ~ + 100 ℃ の 低温域でよく利用される ・弱い酸化性、還元性 雰囲気には安定	・+ 300 ℃以上では銅が酸化する	銅	ニッケル 45 % 銅 55 %(コ ンスタンタン)
超高温用	В	0~ + 1700	0/0 °C + 12.433/+ 1700 °C	・高温まで使用できる ・酸化性の雰囲気には 強い	・還元性雰囲気には弱い ・熱起電力が小さい	ロジウム30% 白金70%	ロジウム6% 白金94%
	R	0 ~ + 1600	0/0 °C + 18.849/+ 1600 °C			ロジウム13% 白金87%	白金
	S	0~ + 1600	0/0 °C + 16.777/+ 1600 °C			ロジウム10% 白金90%	白金
	N	- 200 ∼ + 1250	- 3.990/- 200 °C 43.846/+ 1200 °C	・直線性が良い ・耐酸化性が良い		ニッケル, クロムの合金	ニッケル, シ リコンの合金
	С	0 ~ + 2300	0/0 ℃ + 36.931/+ 2300 ℃	・最も高い温度まで測 定できる ・還元性雰囲気には強い	・空気中などの酸化性雰囲気で使用できない ・硬いため折り曲げが難しい	レニウム5% を含むタン グステン・レ ニウム合金	レニウム26 %を含むタン グステン・レ ニウム合金

トランジスタ技術 2015年9月号 177