プロ養成基礎講座

大切なパソコンを壊さない保護回路付き! ±12 V のアナログ回路評価にも

こういう のが欲し かった

出力3.3~24 V/0~0.3 Aの ハンディ USB実験用電源

③ 保護用出力電流リミッタと出力電圧可変回路

並木 精司 Seiji Namiki

出力電圧を $3.3 \sim 24$ V. 出力電流を $0 \sim 0.3$ A に可変できる USB を入力とするハンディな実験用電源を製作しました(図1). USB からとれる電圧 +5 V と電流500 mA に最適化しました.

【設計コンセプト】

- USBバスの5 Vを降圧&昇圧して3.3~24 Vまで 出力する
- ●電流を0~0.3 Aで制御する. パソコンも接続する回路も破壊することなく安心して電源を入れ

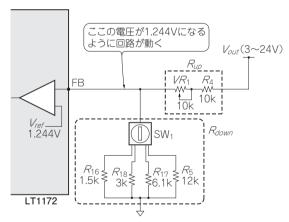


図2 FB端子の電圧は常に $1.244\,V$ 一定に制御される。結果的に $R_{up}\, ar{c}\, R_{down}$ の比で出力電圧が決まる

· SW₁とVR₁を調整して、出力電圧を設定する

られる

- 部品を全部リード・タイプとして手作りしやすくする
- AC100 Vから電源供給して感電の心配をなくす

前回(本誌 2015年 2月号 pp.170~180) では、**図1** (p.164) に示した上段にあたる「電力変換部」、「入力ノイズ・フィルタ」、「出力リプル・フィルタ」、「スナバ回路」を設計しました。

今回は、図1の下段にあたる「出力電圧可変回路」と「保護用出力電流リミッタ」を設計します. さらに、製作したハンディ USB実験用電源の性能を評価します.

制御回路の製作

■ 定電圧回路部

● 出力電圧を可変できるようにする回路

ハンディ USB 実験用電源の出力電圧 V_{out} は、 $3.3 \sim 24$ Vの範囲に設定できます。電圧を設定する回路を図2に示します。出力電圧 V_{out} の範囲が広いため,ロータリ・スイッチ SW₁により大まかにレンジを設定した後,可変抵抗 VR_1 にて最終的な値に調節します。

 SW_1 は $0\sim F$ までの16進数に対応していて4ビットの組み合わせでON/OFFします。 SW_1 の設定値に応

表1 ロータリ・スイッチ SW_1 で設定される合成抵抗値

ロータリ・ スイッチ SW ₁ の設定値 (16進数)	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
$R_5 [\Omega]$	-	12 k	-	12 k	_	12 k	_	12 k	-	12 k	-	12 k	-	12 k	-	12 k
R_{17} [Ω]	-	_	6.1 k	6.1 k	_	_	6.1 k	6.1 k	_	_	6.1 k	6.1 k	_	_	6.1 k	6.1 k
R_{18} [Ω]	-	-	-	-	3 k	3 k	3 k	3 k	-	-	-	-	3 k	3 k	3 k	3 k
R_{16} [Ω]	-	_	-	-	_	-	-	_	1.5 k	1.5 k	1.5 k	1.5 k	1.5 k	1.5 k	1.5 k	1.5 k
合成抵抗值 R_{down} [Ω]	ı	12 k	6.1 k	4.044 k	3 k	2.4 k	2.011 k	1.722 k	1.5 k	1.333 k	1.204 k	1.094 k	1 k	923	859	802

① 昇降圧もOK!スイッチング電源の基本「フライバック」を採用

② 電力変換回路とトランスの設計