第3章 ワイヤレス&高周波回路

藤田 昇 Noboru Fuiita

送信周波数

● 意味

無線機が送信する電波の周波数で、電波法的には無 線機に割り当てられた周波数帯の中央の周波数をいい ます. 一般には. 「割り当て周波数=キャリア(搬送波) 周波数」です.

近隣に同じ周波数を使う無線通信システムが存在す ると、混信や感度抑圧を起こしてお互いの通信を阻害 します. そのため. 国が無線機に使える周波数を割り 当てています。帯域が割り当てられる場合と中心周波 数が割り当てられる場合があります.

多くの無線局は中心周波数で割り当てられています. アマチュア無線局や2.4 GHz帯無線LANは帯域が割 り当てられており、割り当て帯域内であればどの周波 数でも使うことができます。ユーザが勝手に周波数を 使用するとお互いに通信するときに不便なので、 自主 的に周波数チャネルを決めて運用することが多いです. 例えば、24 GHz帯無線 LAN では IEEE 802.11 で指定 された周波数チャネルを使用しています.

無線機の送信周波数が割り当て周波数を逸脱すると 相手と通信できなくなるだけでなく、他者に干渉によ る障害を与えます。そのため無線機を製造したときは 周波数を測定し、規定内であることを確認する必要が あります.

周波数がずれる要因は表1のようにたくさんあり、

表1 周波数が変化する要因はいろいろある

変動要因		変動の多い素子・回路など
環境の変化	温度	水晶振動子,同調LC
塚境の変化	湿度	高インピーダンス回路
電圧変動 部品の経年変化		発振回路
		水晶振動子,同調LC

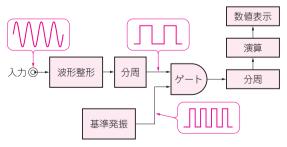


図2 レシプロカル方式の周波数カウンタの原理図 CPUを組み込むなどで回路が複雑になるが、分解能を高くしても短時 間で測定できる

回路設計や部品選択に影響します. 周波数を測定する ということは設計の検証の一つといえます。

● 使用する測定器

かつてはいろいろな方式の測定器が使われてきまし たが、現代は電子式周波数カウンタが使われています. 一般的な周波数カウンタ(ダイレクト方式。図1)は、 入力した交流信号が単位時間内に振動する回数を数え るものです。分解能を上げるためには単位時間(ゲー ト時間)を長くする必要があります. そのため. 1 MHz以下の低い周波数を高い精度(分解能)で測定 すると、測定時間が長くなってしまいます. 例えば、 分解能0.1 Hzのときの測定時間(ゲート時間)は10秒

これに対して、入力信号の周期を測るレシプロカル 方式周波数カウンタ(図2、写真1)があり、短時間で 高い分解能を実現できます。もともと周期から周波数

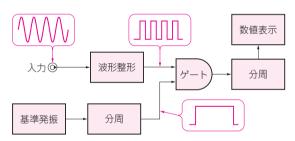


図1 ダイレクト方式の周波数カウンタの原理図

比較的簡単な回路で実現できるが、高い分解能で測定するときは測定時 間が長くなる

周波数	0~15 GHz(Opt 115)
温度安定度	5×10 ⁻⁹ (Opt 010)
最大入力	+30 dBm(C入力)
その他	レシプロカル方式, タイム・インターバル, 平 均化など

写真1 実際の周波数カウンタの例(53132A, キーサイト・テク ノロジー)