
第3章 キー・デバイスと回路のふるまい

本書で製作したD級パワー・アンプは、最新の駆動IC IRS2092を使用しています。ここでは、IRS2092の特徴と製作したD級パワー・アンプの動作について解説します。

最新 D 級アンプ駆動 IC IRS2092 の特徴

付録基板で使用した IRS2092 (インターナショナル・レクティファイアー)は、DIP タイプの最新 D 級アンプ駆動 IC です。

IRS2092は、D級アンプに必要な基本回路(誤差アンプ、PWM比較器、ゲート駆動回路、保護回路)を内蔵しています。従って、このICとスイッチング用パワーMOSFETとわずかな外部回路だけで、出力500WまでのD級アンプを簡単に製作できます。

● 内部構成

図1にブロック・ダイアグラムを示します。すべての動作基準は下側のゲート・ドライバ部の COM 端子となります。そして,入力部と上側のゲート・ドライバ部がフローティングされています。このフローティング電圧は 200 V まで可能なので,出力 500 W $(126\ V_{\rm p-p}@4\ \Omega)$ のアンプのドライバとして使うことができます。

入力部はOTA(Operational Transconductance Amplifier), PWMモジュレータ, 保護回路により構成されています. 実際の動作原理は後述します.

ゲート駆動回路は上側と下側があり、交互に ON/OFF します。上側が交流波形の正の部分をドライブします。下側は負の部分をドライブします。その ON/OFF の切り替え時、両ドライバとも OFF になる時間があり、これをデッド・タイムと呼びます。デッド・タイムは $25\,\mathrm{n}\sim105\,\mathrm{n}\mathrm{s}$ に設定することができます。デッド・タイムが無いと、両側の MOSFET が同時に ON になる可能性があり、そこで大きな電流が流れてしまい効率が低下します。

保護回路としては、上下のMOSFETの過剰電流検出、入力部の供給電圧の低下検出があります。MOSFETの過剰電流はドレイン-ソース間の電圧を監視し、設定値以上になったら保護回路が動作します。また、CSD(Chip Shut Down)端子をGNDに接続することにより、ゲート駆動回路をOFFにし、出力電圧を0にすることができます。

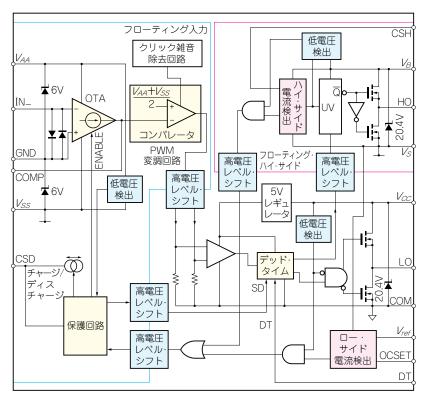


図1 D級アンプ駆動IC IRS2092 のブロック・ダイアグラム

従って、外部の保護回路の出力をCSD端子に接続すれば、さまざまな保護回路を作ることができます。

● 電気的特性

表1に主な電気的特性を示します. $1 \, \mathrm{kHz}$ のときのひずみ率は $0.01 \, \%$ 以下と良好です. スルー・レートは $5 \, \mathrm{V}/\mu \mathrm{s}$ と高速です. 入力オフセット電圧(DC ゲインが $1 \, \mathrm{x}$ ので,これが出力オフセット電圧に $\, \mathrm{x} \, \mathrm{x} \, \mathrm{x} \, \mathrm{y} \, \mathrm{t} \, \mathrm{t} \, \mathrm{x} \, \mathrm{y} \, \mathrm{t} \, \mathrm{t}$ と小さいので,外部に出力オフセット調整回路は必要ありません. 表2に各端子の内容,図 $\, \mathrm{z} \, \mathrm{x} \, \mathrm{y} \, \mathrm{t} \, \mathrm{t} \, \mathrm{y} \, \mathrm{t} \, \mathrm{t} \, \mathrm{t} \, \mathrm{t} \, \mathrm{t}$ か示します.

パワー MOSFET IRFIZ24NPbF の特徴

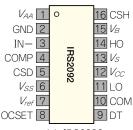

使用したパワー MOSFET は、IRFIZ24NPbF(インターナショナル・レクティファイアー)です。インターナショナル・レクティファイアーの MOSFET はハニカムセル構

表1 D級アンプ駆動IC IRS2092 の電気的特性

シンボル	定 義	値	単位
THD + N	ひずみ率(1 kHz, 50 W, 4 Ω)	< 0.01	%
	残留ノイズ(AES - 17 フィルタ)	< 200	μV_{RMS}
f_{SW}	スイッチング周波数	~ 800	kHz
BW	小信号バンド幅	9	MHz
$I_{B\!I\!N}$	入力バイアス電流	40	nA
V_{OS}	入力オフセット電圧	- 15 ~ 15	mV
SR	スルー・レート	5	V/μs
V_{SS}	フローティング入力絶対電圧	0 ~ 200	V
V_B	ハイ・サイド・フローティング 絶対電圧	$V_S + 10 \sim V_S + 18$	V
V_S	ハイ・サイド・フローティング オフセット電圧	200	V
V_{CC}	固定供給電圧	10 ~ 18	V
I_{AAZ}	フローティング入力正側ツェナー電流	1~11	mA
I_{SSZ}	フローティング入力負側ツェナー電流	1~11	mA
CMRR	同相信号除去比	60	dB
PSRR	電源電圧変動除去比	65	dB
I_o	ゲート・ドライブ電流	- 1.2, + 1	А
DT	デッド・タイム	25/40/65/105	ns

表2 IRS2092のピン名称

ピン番号	シンボル	意 味
1	V_{AA}	Floating input positive supply
2	GND	Floating input supply return
3	IN –	Analog inverting input
4	COMP	Phase compensation input, comparator input
5	CSD	Shutdown timing capacitor
6	V_{SS}	Floating input negative supply
7	V_{ref}	5 V reference voltage to program OCSET pin
8	OCSET	Low side over current threshold setting
9	DT	Deadtime program input
10	COM	Low side supply return
11	LO	Low side output
12	V_{CC}	Low side supply
13	V_S	High side floating supply return
14	НО	High side output
15	V_B	High side floating supply
16	CSH	High side over current sensing input

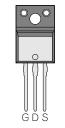


図2 IRS2092とIRFIZ24NPbFのピン配置

(a) IRS2092

(b) IRFIZ24NPbF

表3 パワー MOSFET IRFIZ24NPbFの主な電気的特性

最大ドレイン-ソース間	V_{DSS}	55 V	
最大ドレイン電流	DC	I_D	14 A
取入トレイン电机	パルス	I_{DM}	68 A
最大許容損失($T_c = 25$ °C)	P_D	29 W	
チャネル-外気間熱抵抗	θ_{J-A}	65 ℃ /W	
ゲート入力電荷量	Q_g	20 nC	
ドレイン-ソース間 ON	$R_{DS(on)}$	0.07 Ω	
	ターン ON 遅延時間	$t_{d ({ m on})}$	4.9 ns
スイッチング時間	上昇時間	t_r	34 ns
ハイグテング時間	ターン OFF 遅延時間	$t_{d({\rm off})}$	19 ns
	下降時間	t_f	27ns

造のHEXFETで、ON抵抗が非常に小さいという特徴があります。従って、さまざまな応用において高効率を実現できます。

IRFIZ24NPbF は TO220 パッケージで、すべてがモールドで覆われた Fullpak 構造です。従って、放熱器に直に取り付けることができます。表3に主な電気的特性を、図2 (b) にピン配置を示します。

回路各部の詳細

回路は第1章の図2を参照してください. で囲んだ記号は,できればプローブ端子を付けたい箇所です.これらは,オシロスコープなどで,波形を観測するときにプローブを接続します.

ゲインは.

 R_3/R_2 = 47 k $\Omega/3$ k Ω = 15.7 = 23.9 dB ਿੱਚ.

スイッチング周波数は VR_1 により、280 k \sim 650 kHz まで可変できます。 C_7 はアンプがパワーON 後、アンプが動作を開始するまでの起動時間調整用で、大きな容量にする